Kincora Copper Ltd. New higher-grade gold-copper system extension confirmed and expanded
- New southern zone discovery at the Trundle Park prospect confirmed and extended
- Most recent hole TRDD030 returns broad intervals of two mineralising phases, both with zones of significant visual chalcopyrite (assay results pending):
-
- Cumulative mineralized skarn intervals enlarged and totals ~250m
- Extension of quartz-carbonate-chalcopyrite vein sets down dip with increased veining and visual chalcopyrite
- Skarn bedding and vein orientation provide vectors for following up drill testing of the interpreted causative porphyry intrusion source
- Cumulative mineralized skarn intervals enlarged and totals ~250m
- Hole TRDD030 was a scissor hole collared ~685m south from TRDD029, confirms a ~1.3 km strike of gold-copper mineralization and further opens up a significant search open in all directions
- Previously announced TRDD029 intersected three blind and new broad higher-grade skarn zones1:
-
- Cumulative mineralised intervals some 213m
- Assay results are only available for the Upper skarn which has returned 36m @ 1.17 g/t gold equivalent2. Remaining results are due in approximately 2 weeks
- Cumulative mineralised intervals some 213m
- Second rig has commenced air-core drilling to test the wider intrusive complex and extent of identified anomalous copper-gold mineralisation at open pit target depths to the north of Trundle Park with 54 holes for 2,020m planned
MELBOURNE, Feb. 23, 2022 - Kincora Copper Ltd. (the Company, Kincora) (TSXV: KCC) (ASX: KCC) is very pleased to provide an exploration update from ongoing drilling at Trundle Park prospect situated at the brownfield Trundle project, located in the Macquarie Arc of the Lachlan Fold Belt (LFB) in NSW, Australia.
John Holliday, Technical Committee chair, and Peter Leaman, VP of Exploration, noted:
"While only two holes in, TRDD030 confirms we are onto something of significance in this newly identified southern extension of the mineralized system at Trundle Park and provides increasing confidence of our geological interpretations.
Our working model is that TRDD029 and TRDD030 sit in a down faulted and more mineralised section of the wider system. We are seeing broad zones of multiple chalcopyrite bearing mineralizing events and phases, and the most amounts of visual chalcopyrite to date at the Trundle project.
The intersected skarns zones and vein sets systems have provided important vectors for follow up drilling and are suggestive of very considerable primary source."
An accompanying presentation, including further details on the Trundle project and recent drill results, is available at www.kincoracopper.com
Figure 1: Examples of key mineralised zones in holes TRDD029 & TRDD030 - Trundle Park prospect3
(a) | i. TRDD029 - Upper skarn top section: @ 735m occurring within 2m @ 1.94 g/t gold & 0.94% copper from 734-736m, comprising: prograde garnet (olive)-magnetite (black)-pyrite (dark yellow)-chalcopyrite (yellow), cut by later retrograde carbonate (tan iron carbonate and white calcite)-hematite (red)-chalcopyrite (yellow) |
ii. TRDD030 - Upper skarn top section: @ 649m (assay results pending), magnetite (>70%) with garnet (olive) containing disseminated chalcopyrite (yellow) and cut by later quartz-carbonate-chalcopyrite vein sets (red) and void fillings | |
(b) | i. TRDD029 - Upper skarn: @ 758-762m (assay results pending): prograde garnet-magnetite (black)-pyrite-chalcopyrite (yellow), cut by later retrograde carbonate (tan iron carbonate & white calcite)-hematite (red)-chalcopyrite (@760.5m) |
ii. TRDD030 - Upper skarn: @ 661-666m (assay results pending): ): magnetite (black) with chalcopyrite, cut by later carbonate-quartz veins with minor hematite and traces of chalcopyrite blebs (@ 662.3 - 663m), then continuing with garnet (olive)- magnetite (>20%) and disseminated pyrite skarn with chalcopyrite | |
(c) | i. TRDD029 - Middle skarn: @ 891.6m (assay results pending): prograde garnet-magnetite-pyrite-chalcopyrite (yellow) at 891.6m |
ii. TRDD030 - Middle skarn: @ 742m (assay results pending): prograde garnet (olive)-magnetite (grey-black)-minor pyrite and chalcopyrite (yellow), with later void & fracture fill comprising orthoclase (orange)-calcite and chalcopyrite | |
iii. TRDD030 - Middle skarn: @ 750-753m (assay results pending): prograde magnetite-garnet skarn with visible disseminations of chalcopyrite (yellow), in turn cut by quartz-carbonate void and vein fillings with traces of chalcopyrite blebs with inset photo @ 752m | |
(d) | i. TRDD029 - Quartz-carbonate-chalcopyrite vein sets: (assay results pending): Examples of carbonate-quartz veins with chalcopyrite (yellow) at 474m and 510m. Both veins occur outside of the skarn zones and are hosted by volcaniclastic rocks |
ii. TRDD030 - Quartz-carbonate-chalcopyrite vein sets: @ 819-822.5m (assay results pending): Example of a carbonate-quartz-chalcopyrite vein cutting chlorite-sericite-hematite altered volcanoclastic rocks with insert at 821.4m, zoomed into the chalcopyrite vein. This vein occurs within the Middle Skarn zone. |
1 See January 25th, 2022 press release "Newly discovered higher-grade zones expand the large-scale gold-copper system at Trundle Park" for further details, technical disclosures and QAQC procedures |
2 gold equivalent calculated @ US$1834/oz gold and US$4.52/lb copper with 100% recoveries |
3 Photos of selected intervals which are not representative of the mineralization hosted on the whole property or Trundle Park prospect but are of the alteration and lithology's intersected in the mineralised zones in these sections of drill holes TRDD029 and TRDD030, and current working geological interpretation presented in Figure 3. See Table 2 for visual estimates and descriptions of the selected photos of core. |
There is insufficient drilling data to date to demonstrate continuity of mineralised domains and determine the relationship between mineralization widths and intercept lengths. True widths are not known. |
Figure 2: Hole TRDD031 is ongoing at the Trundle Park prospect with a second rig commencing shallow air-core drilling to test the wider intrusive complex to the north at the Dunn's and Ravenswood South prospects
Figure 3: Significant new mineralised zones intersected in TRDD029 are confirmed and extended in TRDD030 with gold-copper mineralization across ?1.3 km strike and open
(a) Plan view of Trundle Park prospect, multiple visually significant mineralised zones in holes TRDD029 and TRDD030 - see Figure 2 (b) & (c) for sections
(b) | Working Leapfrog alteration model and section of the Trundle Park prospect |
(Section line looking southeast through Figure 2 (a). Length ~1450m and width ~600m) |
(c) | Key alteration, lithology in TRDD029/30 and intrusions with significant mineralised intervals/holes |
Illustration TRDD031 target, incl. plan view of skarn bedding & vein orientation from TRDD029/30 over magnetics (TMI) | |
(Section line looking southeast through Figure 2 (a). Length ~1450m and width ~600m) |
Drill hole TRDD030
Hole TRDD030 was collared approximately 685m SSE as a scissor hole testing the up and down dip extent of the Upper skarn zone in TRDD029 and for a causative porphyry intrusion.
As previously announced1, TRDD029 was designed to test the nearer surface intrusions returned in TRDD028 and the southern strike of an emerging mineralised corridor. The hole was continued with newly identified quartz-carbonate-chalcopyrite vein sets increasing with depth before intersecting multiple blind and new broad higher-grade skarn zones. This was a significant positive development for the project, with these skarn zones exhibiting favourable prograde development, characterised by garnet-magnetite-pyrite, within three notable separate intervals: the Upper Skarn; Middle Skarn; and, Lower Skarn zones, with significant cumulative altered and/or mineralised intervals of some 213m.
Each of these three zones had visible disseminated chalcopyrite associated with the prograde skarn intervals, often with magnetite. garnet and pyrite. Good examples of bladed magnetite were also observed in the prograde skarn assemblages in hole TRDD029.
As previously announced, the assay results for the Upper Skarn zone included 36m @ 0.68 g/t gold and 0.29% copper from 732m with the balance of the hole delivered to ALS Orange and remaining results expected in approximately 2 weeks (impacted by current congestion at the laboratory). Core for TRDD030 has also been delivered to the lab and is expected in approximately 6 weeks
A second stage of copper development is noticed with bleb-like chalcopyrite occurring in a retro-grade skarn stage with carbonate (both iron-carbonate and calcite) along with orthoclase (orange K-feldspar) and hematite (specular and bladed).
As anticipated, TRDD030 has provided significant new skarn bedding and true width data, but also positively surprised with the following key developments:
- Extension of quartz-carbonate-chalcopyrite vein sets: Increased vein sets and visual chalcopyrite where noted over 330m down dip from TRDD029 - see Figure 1 (d) (assays pending). New confirmationary vein orientations have been gained from TRDD030, with a similar NE-trending direction as noted in TRDD029, possibly developed as leakage along fractures emanating from a deeper copper bearing system and providing vectors for follow up drilling.
- Strike and depth extension of mineralised skarns: The cumulative altered and/or mineralized skarn intervals were extended and totals almost 250m (assays pending) (relative to some 213m in TRDD029). Respective units of the Upper, Middle and Lower Skarns from TRDD029 were intersected in TRDD030. For example, the Middle skarn zone was extended vertically over 100m and over 150m horizontality (at end of zone).
The working interpretation is that TRDD029 and TRDD030 sit in a down faulted, preserved, less faulted and more mineralised section of the wider Trundle Park system.
Multiple chalcopyrite bearing events and phases have been noted with the highest visual chalcopyrite seen to date at the Trundle project. The size of the skarns (very significant in the context of the Macquarie Arc) and vein set systems are suggestive of a significant primary source.
Holes TRDD029 and TRDD030 have provided important geological vectors for follow up. Initial follow up hole TRDD031 has commenced, a 50m step out west of TRDD030, targeting the interpreted up dip potential of the system. TRDD031 will test recently gained skarn bedding, chalcopyrite quartz vein orientation and the core of a magnetic high anomaly.
Air-core drilling commenced
Following completion of annual farming harvests, the return of favourable ground conditions and intrusions being intersected nearer surface in holes TRDD028 and TRDD029 at the Trundle Park prospect, a second rig has commenced a shallow air-core drilling program.
This program will test priority areas of the wider intrusive complex to the north of Trundle Park at the Dunn's and Ravenswood South prospects, located 2km north and 5.5km north-west respectively.
A planned 54 holes for 2,020 metres is expected to be completed within a month at the Trundle project, following up previous copper -gold geochemistry anomalies.
Shallow near surface drill hole coverage at the majority of the Trundle project is broadly spaced relative to the nature of the narrow but vertically extensive Macquarie Arc porphyry model with many identified geochemical anomalies not sufficiently followed up.
The commenced air-core program seeks to better understand the potential for nearer surface intrusions and extent of identified anomalous copper-gold mineralisation at open pit target depths within these prospect areas.
Table 1: Trundle project - Collar Information
For further details, including QAQC procedures, please refer to the following press releases: | |
1. | July 6, 2020 - Kincora announces high-grade gold-copper results from first hole at Trundle |
2. | July 23, 2020 - Kincora reports further strong encouragement at Trundle |
3. | September 3, 2020 - Kincora provides update on expanded drilling program at Trundle |
4. | November 30, 2020 - Kincora intersects broad mineralised zones at Trundle |
5. | January 20, 2021 - Kincora intersects further shallow mineralization at Trundle |
6. | March 2021 - Independent Technical Report for the ASX prospectus |
7. | April 22, 2021 - Exploration Update |
8. | July 8, 2021 - Exploration portfolio drilling update |
9. | August 17 2021 - Significant gold-bearing intervals at Trundle Park |
10. | December 7 2021 - Porphyry system extended to surface and depth at Trundle Park |
11. | January 25, 2022 - Newly discovered higher-grade zones expand the large-scale gold-copper system at Trundle Park |
Table 2: Visual estimates and descriptions of Figure 1 core
In relation to the disclosure of selected intervals of drill core and visual mineralisation, the Company cautions that estimates of sulphide mineral abundance and lithology from preliminary geological logging should not be considered a proxy for quantitative analysis of laboratory assay results or detailed petrology. Assay results are required to determine the actual widths and grade of the visual mineralisation. Geological logging will be further calibrated with full assay, petrology results and further team review.
Trundle Project background
The Trundle Project is located in the Junee-Narromine volcanic belt of the Macquarie Arc, less than 30km from the mill at the Northparkes mines in a brownfield setting within the westerly rift separated part of the Northparkes Igneous Complex ("NIC"). The NIC hosts a mineral endowment of approximately 24Moz AuEq (at 0.6% Cu and 0.2g/t Au) and is Australia's second largest porphyry mine comprising of 22 discoveries, 9 of which with positive economics.
The Trundle Project includes one single license covering 167km2 and was secured by Kincora in the March 2020 agreement with RareX Limited ("REE" on the ASX). Kincora is the operator, holds a 65% interest in the Trundle Project and is the sole funder until a positive scoping study is delivered at which time a fund or dilute joint venture will be formed.
For further information on the Trundle and Northparkes Projects please refer to Kincora's website: https://kincoracopper.com/the-trundle-project/
This announcement has been authorised for release by the Board of Kincora Copper Ltd. (ARBN 645 457 763)
Forward-Looking Statements
Certain information regarding Kincora contained herein may constitute forward-looking statements within the meaning of applicable securities laws. Forward-looking statements may include estimates, plans, expectations, opinions, forecasts, projections, guidance or other statements that are not statements of fact. Although Kincora believes that the expectations reflected in such forward-looking statements are reasonable, it can give no assurance that such expectations will prove to have been correct. Kincora cautions that actual performance will be affected by a number of factors, most of which are beyond its control, and that future events and results may vary substantially from what Kincora currently foresees. Factors that could cause actual results to differ materially from those in forward-looking statements include market prices, exploitation and exploration results, continued availability of capital and financing and general economic, market or business conditions. The forward-looking statements are expressly qualified in their entirety by this cautionary statement. The information contained herein is stated as of the current date and is subject to change after that date. Kincora does not assume the obligation to revise or update these forward-looking statements, except as may be required under applicable securities laws.
Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) or the Australian Securities Exchange accepts responsibility for the adequacy or accuracy of this release.
Drilling, Assaying, Logging and QA/QC Procedures
Sampling and QA/QC procedures are carried out by Kincora Copper Ltd., and its contractors, using the Company's protocols as per industry best practise.
All samples have been assayed at ALS Minerals Laboratories, delivered to Orange, NSW, Australia. In addition to internal checks by ALS, the Company incorporates a QA/QC sample protocol utilizing prepared standards and blanks for 5% of all assayed samples.
Diamond drilling was undertaken by DrillIt Consulting Pty Ltd, from Parkes, under the supervision of our field geologists. All drill core was logged to best industry standard by well-trained geologists and Kincora's drill core sampling protocol consisted a collection of samples over all of the logged core.
Sample interval selection was based on geological controls or mineralization or metre intervals, and/or guidance from the Technical Committee provided subsequent to daily drill and logging reports. Sample intervals are cut by the Company and delivered by the Company direct to ALS.
All reported assay results are performed by ALS and widths reported are drill core lengths. There is insufficient drilling data to date to demonstrate continuity of mineralised domains and determine the relationship between mineralization widths and intercept lengths.
True widths are not known at this stage.
Significant mineralised intervals for drilling at the Trundle project are reported based upon two different cut off grade criteria:
- Interpreted near surface skarn gold and copper intercepts are calculated using a lower cut of 0.20g/t and 0.10% respectively; and,
- Porphyry intrusion system gold and copper intercepts are calculated using a lower cut of 0.10g/t and 0.05% respectively.
Significant mineralised intervals are reported with dilution on the basis of:
- Internal dilution is below the aforementioned respective cut off's; and,
- Dilutions related with core loss as flagged by a "*".
The following assay techniques have been adopted for drilling at the Trundle project:
- Gold: Au-AA24 (Fire assay), reported.
- Multiple elements: ME-ICP61 (4 acid digestion with ICP-AES analysis for 33 elements) and ME-MS61 (4 acid digestion with ICP-AES & ICP-MS analysis for 48 elements), the latter report for TRDD001 and former reported for holes TRDD002-TRDD022.
- Copper oxides and selected intervals with native copper: ME-ICP44 (Aqua regia digestion with ICP-AES analysis) has been assayed, but not reported.
- Assay results >10g/t gold and/or 1% copper are re-assayed.
Qualified Person
The scientific and technical information in this news release was prepared in accordance with the standards of the Canadian Institute of Mining, Metallurgy and Petroleum and National Instrument 43-101 - Standards of Disclosure for Mineral Projects ("NI 43-101") and was reviewed, verified and compiled by Kincora's geological staff under the supervision of Paul Cromie (BSc Hons. M.Sc. Economic Geology, PhD, member of the Australian Institute of Mining and Metallurgy and Society of Economic Geologists), Exploration Manager Australia, who is the Qualified Persons for the purpose of NI 43-101.
JORC Competent Person Statement
Information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves has been reviewed and approved by Mr. Paul Cromie, a Qualified Person under the definition established by JORC and have sufficient experience which is relevant to the style of mineralization and type of deposit under consideration and to the activity being undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.
Paul Cromie (BSc Hons. M.Sc. Economic Geology, PhD, member of the Australian Institute of Mining and Metallurgy and Society of Economic Geologists), is Exploration Manager Australia for the Company.
Mr. Paul Cromie consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.
The review and verification process for the information disclosed herein for the Trundle, Fairholme and Nyngan projects have included the receipt of all material exploration data, results and sampling procedures of previous operators and review of such information by Kincora's geological staff using standard verification procedures.
JORC TABLE 1
Section 1 Sampling Techniques and Data
(Criteria in this section apply to all succeeding sections).
Criteria | JORC Code explanation | Commentary |
Sampling techniques |
|
|
Drilling techniques |
|
|
Drill sample recovery |
|
|
Logging |
|
|
Sub-sampling techniques and sample preparation |
|
|
Quality of assay data and laboratory tests |
|
|
Verification of sampling and assaying |
|
|
Location of data points |
|
|
Data spacing and distribution |
|
|
Orientation of data in relation to geological structure |
|
|
Sample security |
|
|
Audits or reviews |
|
|
Section 2 Reporting of Exploration Results
(Criteria listed in the preceding section also apply to this section.)
Criteria | JORC Code explanation | Commentary |
Mineral tenement and land tenure status |
|
|
Exploration done by other parties |
|
|
Geology |
|
|
Drill hole Information |
|
|
Data aggregation methods |
|
|
Relationship between mineralisation widths and intercept lengths |
|
|
Diagrams |
|
|
Balanced reporting |
|
|
Other substantive exploration data |
|
|
Further work |
|
|
SOURCE Kincora Copper Ltd.
Contact
Sam Spring, President and Chief Executive Officer, sam.spring@kincoracopper.com or +61431 329 345; For media enquiries: Media & Capital Partners, Angela East at Angela.East@mcpartners.com.au; Executive office, 400 - 837 West Hastings Street, Vancouver, BC V6C 3N6, Canada, Tel: 1.604.283.1722, Fax: 1.888.241.5996; Subsidiary office Australia, Leydin Freyer Corp Pty Ltd, Level 4, 100 Albert Road, South Melbourne, Victoria 3205